2020年浙江成人高考理科《数学》难点:奇偶性与单调性

浙江成人高考信息网 发布时间:2020-10-18 09:23:06

       函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识.


  ●难点磁场


  (★★★★★)已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.


  ●案例探究


  [例1]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,设不等式解集为A,B=A∪{x|1≤x≤ },求函数g(x)=-3x2+3x-4(x∈B)的最大值.


  命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目.


  知识依托:主要依据函数的性质去解决问题.


  错解分析:题目不等式中的“f”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域.


  技巧与方法:借助奇偶性脱去“f”号,转化为xcos不等式,利用数形结合进行集合运算和求最值.


  解:由 且x≠0,故0


  又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,


  ∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2


  ∴B=A∪{x|1≤x≤ }={x|1≤x< },又g(x)=-3x2+3x-4=-3(x- )2- 知:g(x)在B上为减函数,∴g(x)max=g(1)=-4.


  [例2]已知奇函数f(x)的定义域

免费领取浙江成人高考复习通关资料包

声明:

(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。

(二)网站文章免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。

本文地址:/shuxueli/9642.html

浙江成考交流群

浙江成考交流群

与考生自由互动、并且能直接与资深老师进行交流、解答。